Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators
نویسنده
چکیده
This paper presents the numerical simulation results and the experimental investigations of a polymeric microgripper designed using the cascaded V-shaped electrothermal actuators. The microgripper was simulated using electro-thermo-mechanical finite element method (FEM) based on Coventorware 2014 software in order to check the performance of the gripper. As structural material of the microgripper, the SU-8 biocompatible polymer was used during the fabrication process. The metallic micro-heaters were encapsulated in the polymeric actuation structures of the microgrippers to reduce the undesirable out-of-plane displacement of the gripper tips, to reduce the mechanical stress and to improve the thermal efficiency. Experimental testing has been performed to determine the openings of the microgripper tips as function of electrical current. A displacement of the tips of more than 50 μm can be obtained at an electrical current of around 25-26 mA. Over 27-28 mA the heaters are still working but a softening and a damaging status in the polymer were observed.
منابع مشابه
Simulation of a Microgripper with Electrothermal Actuator Using COMSOL Software Based on the Finite Element Method
Micro-electro-mechanical systems (MEMs) are Combination of electrical and mechanical components in Micron dimensions. In recent years, holding, actuating methods and handling of MEMs components such as microgripper, microsensors and etc. have been deeply studied. Microgrippers for handling, positioning and assembling of micro components are very useful so that for clamping need actuation create...
متن کاملSimulation of a Microgripper with Electrothermal Actuator Using COMSOL Software Based on the Finite Element Method
Micro-electro-mechanical systems (MEMs) are Combination of electrical and mechanical components in Micron dimensions. In recent years, holding, actuating methods and handling of MEMs components such as microgripper, microsensors and etc. have been deeply studied. Microgrippers for handling, positioning and assembling of micro components are very useful so that for clamping need actuation create...
متن کاملGDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers
V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...
متن کاملA superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study
This paper presents the analysis, design, and characterization of a superelastic alloy (NiTi) microgripper with integrated electromagnetic actuators and piezoelectric force sensors. The microgripper, fabricated by electro-discharge machining, features force sensing capability, large force output, and large displacements to accommodate objects of various sizes. The design parameters for the embe...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کامل